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The unsustainable use of ecosystems by human societies has put global biodiversity

in peril. Bees are, in this context, a popular example of a highly diversified group of

pollinators whose collapse is a major concern given the invaluable ecosystem services

they provide. Amongst them, bumblebees (Bombus) have increasingly drawn the

attention of scientists due to their dramatic population declines globally. This regression

has converted them into popular conservation entities, making them the second most

studied group of bees worldwide. However, in addition to have become relevant models

in the fields of ecology, evolution and biogeography, bumblebees have also been used as

models for studying wild bee decline and conservation worldwide. Integrating evidence

from the comparative ecology and resilience of bumblebees and wild bees, I discuss

the relevance of using Bombus as radars for wild bee decline worldwide. Responses

of bumblebees to environmental changes are generally not comparable with those of

wild bees because of their relatively long activity period, their inherent sensitivity to

high temperatures, their relatively generalist diet breadth and many aspects arising from

their eusocial behavior. Moreover, important differences in the available historical data

between bumblebees and other bees make comparisons of conservation status even

more arduous. Overall, these results reinforce the need for conservation actions that

consider a higher level of understanding of ecological diversity in wild bees, highlight the

need for an updated and more extensive sampling of these organisms, and emphasize

that more caution is required when extrapolating trends from model species.
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INTRODUCTION

The unsustainable use of ecosystems by human societies has made 75–95% of the terrestrial
biosphere to be altered by anthropogenic stressors, with considerable impacts on its fauna and
flora (Kennedy et al., 2019; Ellis et al., 2021; Wagner et al., 2021). Among the myriad of
threatened organisms are bees (Hymenoptera: Anthophila), a highly diversified group of pollinators
represented by more than 20.000 described species globally (Michener, 2007; Zattara and Aizen,
2021). Their collapse in both abundance and diversity is a critical issue for ecosystems and human
societies given the invaluable ecosystem services they provide in the perpetuation of numerous
wild plants and crops worldwide (Matias et al., 2017; Ollerton, 2017; Porto et al., 2020). As for
most threatened insects (Wagner, 2020; Wagner et al., 2021), bee decline involves climate change,
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landscape destruction, the misuse/overuse of pesticides, the
arrival of invasive species and the transmission of pathogens as
predominant drivers (Cariveau and Winfree, 2015; Carvalheiro
et al., 2020; Mathiasson and Rehan, 2020; LeBuhn and Vargas
Luna, 2021).

Bumblebees (Bombus spp.), known by ∼270 species at the
global scale, are a clade of bees mostly widespread across
America, Europe and Asia, with distributions encompassing all
biomes except extremely xeric deserts (Williams, 1998; Williams
and Jepsen, 2021). These pollinators are increasingly used as
models in a large array of scientific fields including ecology
(Phelan et al., 2021), evolution (Tian et al., 2019; Wood et al.,
2021b) and biogeography (Ghisbain et al., 2020; Potapov et al.,
2021).Most concerningly however, bumblebees have increasingly
drawn the attention of scientists worldwide due to the dramatic
regressions of their populations across all continents they occupy
(Bartomeus et al., 2013; Kerr et al., 2015; Aizen et al., 2019;
Rasmont et al., 2021). These repeated patterns of decline have
converted them into popular conservation entities, making them
the second most studied bees worldwide after the honeybee Apis
mellifera (Cameron and Sadd, 2020).

Against this context of global bee decline, Wood et al. (2020)
discussed the relevance of using the A. mellifera as a sensor for
wild bee decline. The authors showed that despite some of the
responses of honeybees to anthropic stressors being similar to
those of wild bees, this managed species is not a suitable surrogate
for detecting declines in wild bees. In this review, I raise a similar
concern for bumblebees, discussing their relevance as models to
global changes for other wild bees.

BUMBLEBEES AS FLAGSHIP SPECIES
FOR BEE CONSERVATION

Bumblebees have always been immensely popular due to their
great cultural value in north temperate regions (Rasmont et al.,
2021). The overall colorful appearance, abundance and diversity
of bumblebees in areas frequented by natural historians of
the northern hemisphere have made them especially well-
represented in museum collections (Kleijn and Raemakers, 2008;
Cameron et al., 2011; Wood et al., 2019, 2021b). This has led
scientists to rapidly acquire paramount quantities of data in
comparison to other groups of wild bees (Nieto et al., 2014). As
a direct benefit of having acquired so much biogeographic data
on these culturally “cherished” animals is the speed at which
their decline has been reported in Europe (Free and Butler,
1959; Williams, 1986; Rasmont and Mersch, 1988; Williams and
Osborne, 2009). Among the array of insects that have shown
dramatic declines since then, bumblebees showed an additional
characteristic that would allow them to get even more attention:
their ability to be domesticated (Velthuis and van Doorn, 2006).
The immense economic importance of this management for
global agriculture, and later the subsequent use of managed
colonies for research purposes rapidly ranked bumblebees higher
than ever in our conservation priorities (Cameron and Sadd,
2020; Rasmont et al., 2021). For all these reasons, bumblebees
were intensively investigated compared to the rest of wild bees

and are therefore usually used as main examples to illustrate
the decline of other bee species. Research about their decline
is now extensively cited in the scientific literature to illustrate
the regression of other native/wild bees (e.g., literature cited in
Carvalheiro et al., 2020; Reilly et al., 2020; Kammerer et al., 2021;
Zattara and Aizen, 2021) but also of pollinators in general (e.g.,
in Potts et al., 2010; Sevenello et al., 2020; Dicks et al., 2021), and
of even higher taxonomical levels such as insects and arthropods
(e.g., in Harvey et al., 2020; Høye, 2020; Wagner, 2020; Halsch
et al., 2021). It is not uncommon that works exclusively focusing
on bumblebees are cited as references to support statements
about threats to wild, native bees (e.g., in Winfree, 2010; Phelps
et al., 2018; Vega-Hidalgo et al., 2020) or to pollinators in
general (e.g., in Potts et al., 2016; Dicks et al., 2021). However,
are bumblebees objectively that convincing as models for wild
bee decline?

BUMBLEBEES ARE ABERRANT BEES

Stronger Together?
Displaying a social behavior is more the exception than the rule
in bees (around 1,000 social species over the 20,000 known bee
species, cf. Michener, 2007; Wcislo and Fewell, 2017). Outside
the fundamental aspect of this divergence in a life history trait,
the fact that bumblebees fall into this relatively rare category
of sociality makes their responses to global changes completely
different to those of solitary bees (Schweiger et al., 2010).

Eusocial pollinators such as bumblebees mostly present both
more flexible and longer activity periods, extending across several
months from the time of nest foundation until sexuals are
produced (Goulson, 2003). In contrast, wild solitary bees tend
to have much narrower activity windows, with an increased
likelihood to suffer from temporal mismatches (Gérard et al.,
2020). In Bombus, this long activity period imposed by their
sociality implies dietary generalism, a characteristic that allows
the colony to benefit from resources all along its lifetime
(Goulson, 2003). With few exceptions, bumblebees are not
strictly restricted to the consumption of plants from a single
species or even genus (Kleijn and Raemakers, 2008; Rasmont
et al., 2021). Despite obvious dietary requirements for their
survival (Wood et al., 2021b), bumblebees do not fall into the
“oligolectic/monolectic” category encountered in many other
bee genera (Rasmussen et al., 2020; Cane, 2021). This is a
considerable advantage as specialized bees have shown greater
range declines and higher sensibility to land use in comparison
to more generalist bees (Biesmeijer et al., 2006; Palma et al.,
2015). In addition to a certain degree of generalism, larger
bees such as bumblebees are expected to cope well with patchy
resources requiring longer flight ranges (cf. Greenleaf et al., 2007).
This foraging success enables colony growth and enhances food
storage, another invaluable buffer against the inclement weather
or periods of sparse availability of adequate flowering plants
(Wcislo and Fewell, 2017).

Another fundamental privilege given by sociality in a context
of climate change is colony homeostasis. In contrast with solitary
bees, worker bumblebees keep the ability to take shelter in a
thermoregulated nest during unfavorable weather conditions. In
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a case of heat waves, groups of worker bumblebees use their
wings to fan when temperature rises above optimal (Heinrich,
1985; Westhus et al., 2013; Wynants et al., 2021). Alternatively,
the endothermic nature of bumblebees can also be helpful to
warm up the nests in especially cold periods (Heinrich, 2004).
Overall, temperatures in bumblebee nests are carefully regulated
to setpoints conducive to optimize larval development, regardless
of environmental challenges (Heinrich, 1985, 2004). In solitary
bees however, homeostasis remains an individual matter.

Although many other “universal” advantages of sociality exist
(e.g., increased defense against predators, brood care, etc), the
so-called “superorganism resilience” of eusocial organisms is
still not optimal in Bombus. For instance, while the effects of
pesticides could be buffered by the high number of workers in
social colonies compared to solitary bees, the solitary phase of the
bumblebees’ life cycle still makes them susceptible to face these
chemicals (Straub et al., 2015).

Bear Wasps1 in a Warming World
Understanding the metabolism of bumblebees requires to
understand their evolutionary history. It is most likely that
bumblebees appeared about 25–40 million years ago in high-
altitude regions of Northeast Asia (Hines, 2008). This period
coincides with the sharp decline in temperature of the Eocene-
Oligocene transition (about 34 million years ago), a period
well-known to have caused a major extinction and turnover
of organisms, replacing many tropical taxa organisms adapted
to cooler climates. Except for a few species, bumblebees still
constitute a mostly cold-adapted lineage to day. This trait
leads to key difference in their distribution ranges compared
to most other bees, as bumblebee diversity worldwide peaks
in high altitudes, far from the actual hotspots of solitary bee
diversity in Mediterranean areas (Michener, 2007; Orr et al.,
2020; Boustani et al., 2021; Wood et al., 2021a) where Bombus
are poorly represented (Rasmont et al., 2021). This contrast
can be explained by the origin of bees themselves, likely to
have radiated from the xeric regions of the highly seasonal
interior of the old continent of Gondwanaland (Michener,
2007). Well-beyond being a simple evolutionary difference, the
tendency of bumblebees to be cold-adapted now constitutes a
special disadvantage in a context of global warming. While their
especially hairy body displays interesting metabolic assets to
overcome cool to freezing conditions, resisting to heat stress
at the individual level is much more arduous. Several studies
have shown the dramatic impact of heat stress in bumblebees
across multiple subgenera, highlighting their global tendency
to be sensitive to the heat (Pimsler et al., 2020; Zambra et al.,
2020; Maebe et al., 2021a; Martinet et al., 2021a). Nevertheless,
the temperatures tested by these studies are not especially
uncommon in areas hosting a large diversity of solitary bees
(Baldock et al., 2018; Lhomme et al., 2020). On the contrary, the
remarkable resistance of bumblebees to cold climates, including
areas where the ground is frozen for much of the year, allows
them to take advantage of an ecological niche that is unoccupied
by virtually all other Apoid Hymenoptera. Although a few species

1“bear wasp” is the literal translation of a widespread Chinese name for bumblebee.

of solitary bees are also capable of endothermy (Stone, 1990),
insects mostly remain classic ectotherms forced to strictly cope
with the outside temperatures. This trait has eventually led
bumblebees and most wild bees to occupy rather distinct climatic
niches that do not respond similarly to the current climate
change (IPCC, 2019) and that are not either expected to do so
in long-term future (Spinoni et al., 2018), making comparisons
of projected population trends under different climate change
scenarios arduous.

The Bigger, the Better?
Because heat production is more efficient in larger bees (de
Farias-Silva and Freitas, 2021), it is not surprising that cold-
adapted animals like bumblebees display a comparatively big
body size. In addition to thermoregulation, the fact that larger
animals present lower rates of water loss might favor bumblebees
against the issue of hydric stress (cf. Gérard et al., 2020; Maebe
et al., 2021b). In addition, recent research found bumblebee body
size to be correlated to habitat fragmentation, which suggests
that larger bees such as bumblebees could be better selected
in fragmented landscapes as they are able to reach adequate
habitats at a longer distance (Theodorou et al., 2021). Finally,
the comparatively large size of bumblebees could make them
relatively more resilient to pesticides, as pesticide vulnerability
could be negatively correlated with body size in bees (Arena and
Sgolastra, 2014).

Despite these advantages, bigger animals are also expected
to retain heat more due to their higher volume/surface ratio.
As bumblebees become distressed when temperature reaches
35◦C (Heinrich, 2004), one could consider their larger body
as detrimental as it could cause overheating when foraging
in warming environments. In contrast with other wild bees
however, bumblebees are generally bigger under warmer climates
(Gérard et al., 2018), although substantial intraspecific and
species-specific variation in size has been recently demonstrated
(Lozier et al., 2021). Importantly, evidence from an analysis
involving >30,000 specimens from >430 species suggests that
taxa with a larger body size (including bumblebees) have been
more likely to decline over a 140-y period (Bartomeus et al.,
2013). Overall, more work is needed to disentangle the impacts
of body size in bumblebees (Oyen et al., 2021) to assess whether
larger species might be favored or not in areas particularly
affected by climate warming.

DOMESTICATING AN OUTLIER

The end of the 1980s was marked by an important event in the
study of bumblebees: the commercial domestication of the buff-
tailed bumblebee Bombus terrestris (Velthuis and van Doorn,
2006). Beyond the purely economic interest of this feat, the
availability of colonies of this species on demand has allowed
scientists in many countries to thoroughly study its ethology,
metabolism and their resilience to different drivers of decline
such as heat waves or pesticides. All in all, the domestication of
B. terrestris has made it possible to test ex situ the impacts of the
Anthropocene on a bee that is different from the honeybee, and
with an unprecedented possibility of experimental replication.
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FIGURE 1 | IUCN Red List status of the bees of Europe following Nieto et al. (2014) separating bumblebees from all other bees and including or not bees falling in the

“Data Deficient” category. Numbers in the middle of the pie charts correspond to the percentage of threatened species (i.e., vulnerable, endangered and critically

endangered).

Recent studies have however highlighted the over-performance
of B. terrestris against global stressors (e.g., heat stress) compared
to other bumblebees (Zambra et al., 2020; Martinet et al.,
2021a,b), making it an exception among bumblebees in the
Anthropocene (Ghisbain et al., 2021).

The metabolic and physiological performances of B. terrestris
have been mostly discussed in the current context of geographic
expansion and invasions in the Anthropocene (Geslin et al., 2017;
Aizen et al., 2020; Ghisbain et al., 2021). Very quickly after its
domestication began, the buff-tailed bumblebee became invasive
in very many areas of the globe where it was originally absent
(Rendoll-Carcamo et al., 2017; Aizen et al., 2019; Chandler et al.,
2019). This expansion syndrome is relatively uncommon among
bumblebees and other bees in the context of global change,
being again the exception rather than the rule (Rasmont et al.,
2015, 2021; Ghisbain et al., 2021). This pattern of geographic
expansion in the buff-tailed bumblebee may be explained by
a series of traits whose combination in a single species is
relatively exceptional. Bombus terrestris has a large and highly
flexible diet (Rasmont et al., 2008), produces larger pupae than
other bumblebees even on resources of lower quality (Romain
Moerman et al., 2016), copes well with a variable climate and
extreme weather events (Zambra et al., 2020), is an early-
emerging bumblebee with the ability to be active in winter
(Stelzer et al., 2010) and seems to have an inherently high
dispersal ability (Rasmont et al., 2015). Instead, numerous other
bumblebee species display a more restricted diet (Wood et al.,
2019, 2021b), cannot stand pronounced heat waves (Martinet
et al., 2021a), are univoltine and tend to decline or remain
stable rather than expand (Cameron et al., 2011; Cameron
and Sadd, 2020). Overall, this drastic difference between B.

terrestris and all other bumblebees is an additional point
questioning the relevance of using it as model for other wild,
solitary species.

SIMILAR STATUS FOR DISSIMILAR BEES?

The well-established and well-studied patterns of decline
experienced by several bumblebees worldwide are very often used
as example to illustrate the parallel non-Bombus bee decline,
both at local (Drossart et al., 2019) and global scales (Potts
et al., 2010, 2016). As a case study, I will focus here on
the comparatively well-known European bee fauna, for which
assessments of both bumblebee and wild bee population changes
have been thoroughly reported (Nieto et al., 2014; Michez
et al., 2019; Wood et al., 2020). In the latest European Red
List of Bees, ∼9% were assessed “threatened” against the IUCN
criteria (Nieto et al., 2014). Importantly, more than a half of
all European bees could not be assessed due to an insufficient
amount of available data, making them fall in the category
“Data Deficient.”

Figure 1 shows that regardless of the inclusion or not of
the Data Deficient category, bumblebees appear to be especially
threatened when separated from all other bees at the continental
scale. Although results from Red Lists at national levels and
following the same IUCN criteria also highlight the particular
sensitivity of bumblebees against global changes (e.g., Drossart
et al., 2019; Gogala, 2019; Quaranta et al., 2019), comparisons
of that type remain nebulous. Indeed, the “Data Deficient” non-
Bombus bees could include a substantial proportion of threatened
species, making threatened non-Bombus bee ranging from∼4 to
∼60%, respectively, if none or all data deficient were considered
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as threatened (Nieto et al., 2014). In addition, given that the
Red Listing of Nieto et al. (2014) includes all historic data of
European bees (including from areas where species have now
vanished) and that bumblebee records have always been more
represented in the last two centuries, both the EOO (Extent
of Occurrence) and AOO (Area of Occupancy) calculations
of the latter have benefitted from higher spatial resolution
at the continental level. Overall, these fundamental sampling
differences emphasize the difficulty to extrapolate trends from
bumblebee to wild bee conservation, highlighting the need for
an updated and more extensive sampling of the European
bee fauna.

IMPERFECT MODELS, YET BETTER THAN
NOTHING

The fact that bumblebees are imperfect models for understanding
wild bee conservation does not make them completely irrelevant
for the understanding of the basic ecological requirements of
wild bees. Research on bumblebees has provided key insight
into the importance of maintaining connected habitats with
an adequate supply of high-quality resources for all bees
(Potts et al., 2016; Drossart and Gérard, 2020). The lessons
learned from bumblebees concerning the impacts of biological
pollution caused by domesticated organisms must be a warning
signal to avoid such repercussions on other bees (Aizen
et al., 2019; Bartomeus et al., 2020). The pathogen spillover
by domesticated species is, for instance, a significant cause
of decline in native bumblebee fauna and another growing
concern for other native wild bees (Graystock et al., 2016).
Similarly, the impacts of chemical pollution caused by plant
protection products, repeatedly tested in bumblebees, should
also be a cause for alarm for other bees (Sgolastra et al.,
2020). Last but not least, the overall impact of climate
change on bumblebees as a driving force leading to species
extirpation (Kerr et al., 2015; Rasmont et al., 2015) can be used as

a preliminary understanding of how climatic variations could
affect the population dynamics of bees.

CONCLUSION

Although species-specific understanding of population
trajectories would be ideal for selecting the bee species that
are at greater risk, the paramount diversity of ecological traits
(e.g., activity period, specialization in nesting substrate, social
level, diet breadth) of wild bees at the global scale forces
conservation biologists to use model species as surrogates.
However, as for honeybees (Wood et al., 2020), the responses of
bumblebees and wild bees to similar threats are generally not
comparable. Although many aspects resulting from bumblebee
sociality such as colony homeostasis, optimized food intake
and broader diet breadth could make them particularly resilient
under specific stressors, their overall tendency to be cold-adapted
makes them especially disadvantaged in a warming environment.
Overall, these results reinforce the need for conservation actions
that consider a broader array of ecological diversity in wild
bees, which in turn requires additional research into their
biological requirements.
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